skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitlock, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present oxygen isotope and charcoal accumulation records from two lakes in eastern Washington that have sufficient temporal resolution to quantitatively compare with tree‐ring records and meteorological data. Hydroclimate reconstructions from tree‐rings and lake sediments show close correspondence after accounting for seasonal‐ to centennial‐ scale temporal sensitivities. Carbonate δ18O measurements from Castor and Round lakes reveal that the Medieval Climate Anomaly (MCA) experienced wetter November‐March conditions than the Little Ice Age (LIA). Charcoal records from Castor, Round, and nearby lakes show elevated fire activity during the LIA compared to the MCA. Increased multidecadal hydroclimate variability after 1250 CE is evident in proxy records throughout western North America. In the Upper Columbia River Basin, multidecadal wet periods during the LIA may have enhanced fuel loads that burned in subsequent dry periods. A notable decline in biomass burning occurred with Euro‐American settlement in the late nineteenth century. 
    more » « less
  2. This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Lake. The data include parameters of paleolimnology (physical properties) with a geographic location of Washington, United States Of America. The time period coverage is from 1181 to -68 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data. 
    more » « less
  3. Abstract Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits. New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the >1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ~1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion. 
    more » « less